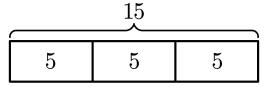
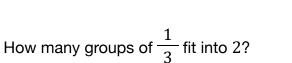
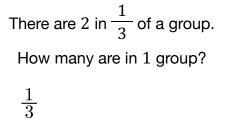
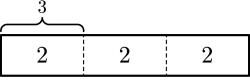

Unit 4 Summary


Prior Learning Grades 3–5	Math 6, Unit 4	Future Learning Math 6, Units 5 and 6
 Equivalent fractions Calculating volumes of prisms Interpreting fractions as division Multiplying fractions Dividing unit fractions and whole numbers Math 6, Unit 1 Calculating areas of parallelograms 	 Dividing fractions Area and volume with fractions 	 Dividing decimals Solving equations with fractions Math 7 Operations with positive and negative numbers Scale drawings and scaled areas Proportional relationships


Introduction to Dividing Fractions

Here are two ways to think about $15 \div 3 = 5$.




There are 15 in 3 groups.

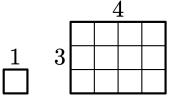
Dividing Fractions

One strategy for dividing fractions is to rewrite both fractions with a common denominator.

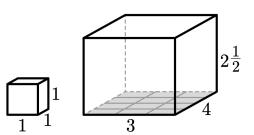
For $\frac{2}{3} \div \frac{1}{6}$, it can be helpful to rewrite $\frac{2}{3}$ as $\frac{4}{6}$. This is now $\frac{4}{6} \div \frac{1}{6}$, which is equivalent to $4 \div 1$ or 4.

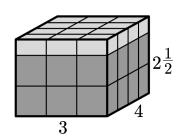
Area and Volume With Fractions

Area is the number of unit squares needed to cover a shape without gaps or overlaps.


Area of the base: $3 \cdot 4 = 12$ square units

Volume is the number of unit cubes needed to fill a container.


The volume of a prism is the area of the base multiplied by the height.


There are
$$2\frac{1}{2}$$
 layers of 12 cubic units.

Volume: $12 \cdot 2\frac{1}{2} = 30$ cubic units.

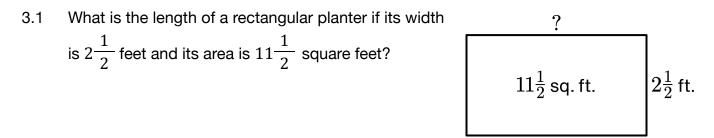
1

$$\begin{array}{c}
\frac{2}{3} \\
\hline \\
1 \\
\hline \\
\frac{1}{6}
\end{array}$$

Try This at Home

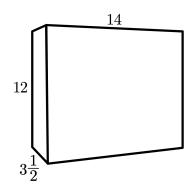
Introduction to Dividing Fractions

Here is an expression: $3 \div \frac{1}{4}$.


- 1.1 Describe two different situations that could be represented by this expression
- 1.2 Estimate the value of the quotient: Is it less than 1, equal to 1, or greater than 1? Explain how you know.
- 1.3 Draw a diagram that could help you evaluate this expression.
- 1.4 What is $3 \div \frac{1}{4}$?

Dividing Fractions

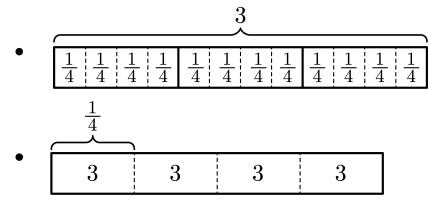
Determine the value of each expression. Show your thinking.


2.1 $\frac{2}{9} \div \frac{4}{9}$ 2.2 $\frac{1}{3} \div \frac{5}{9}$ 2.3 $3 \div \frac{1}{7}$ 2.4 $3 \div \frac{4}{7}$

Area and Volume With Fractions

3.2 What is the volume of a box that is 14 inches by 12

inches by $3\frac{1}{2}$ inches?



Solutions:

- 1.1 Responses vary.
 - How many $\frac{1}{4}$ -cup scoops would it take to get 3 cups?
 - If 3 flowers fill $\frac{1}{4}$ of a big planter, how many flowers fill 1 big planter box?
- 1.2 Greater than 1.

Explanations vary. You can think of this as "how many groups of $\frac{1}{4}$ fit into 3?" Since that will require more than 1 group, the quotient is greater than 1.

1.3 Responses vary.

1.4 12
2.1
$$\frac{1}{2}$$

2.2 $\frac{3}{5}$

2.4
$$\frac{21}{4}$$
 or $5\frac{1}{4}$

3.1
$$4\frac{1}{2}$$
 feet

3.2 588 cubic inches